TED Series, Part IV: Magnesium and Mental Health – New Research Findings and NeuroAffective-CBTยฎ Implications.


Daniel Mirea (October 2025)
NeuroAffective-CBTยฎ | https://neuroaffectivecbt.com


Abstract

In this fourth instalment of the TED (Tiredโ€“Exerciseโ€“Diet) Series, we explore magnesium, an essential mineral often overlooked in discussions of mood, stress, and emotional regulation. Drawing from neuroscience, nutritional psychiatry, and the NeuroAffective-CBTยฎ framework, this article examines how magnesium supports brain function, sleep, and affective stability. It highlights evidence linking low magnesium levels to stress sensitivity, anxiety, and depression, and outlines how restoring magnesium balance may enhance emotional resilience, cognitive clarity, and therapeutic responsiveness.


Introducing TED in the NeuroAffective-CBTยฎ Framework

The TED (Tiredโ€“Exerciseโ€“Diet) model integrates neuroscience, psychophysiology, and behavioural science to restore balance across the Bodyโ€“Brainโ€“Affect triangle central to emotional health. Within NeuroAffective-CBTยฎ, TED interventions target the biological underpinnings of affective instability, fatigue, sleep disruption, poor diet, and chronic stress (Mirea, 2023; Mirea, 2025).

Following earlier TED instalments on Creatine (Part I), Insulin Resistance (Part II), and Omega-3 Fatty Acids (Part III), part IV turns to Magnesium, the quiet stabiliser of the nervous system. Though often overlooked, magnesium deficiency is widespread and increasingly recognised as a modifiable factor in stress, anxiety, and mood disorders. Despite its importance, subclinical magnesium deficiency affects an estimated 60โ€“70% of adults, with even higher rates observed in those under chronic stress or psychological strain (Maguire, 2018).


Magnesium and the Stress Response

Both physical and emotional stress, common in our multi-tasking, always-connected society, rapidly drain the bodyโ€™s magnesium stores. Research shows an inverse relationship between cortisol and magnesium levels: the higher the magnesium, the lower the cortisol (Takase et al., 2004). In turn, chronic stress accelerates magnesium loss through the urine and cellular loss, a process that weakens the bodyโ€™s ability to recover, creating a self-perpetuating loop of tension, fatigue, and anxiety.

In controlled studies, adrenaline infusions have been shown to rapidly and persistently reduce serum magnesium, with levels remaining low even after stress hormones subside (White et al., 1992). Observational data echo this: students under exam stress and soldiers anticipating conflict both show sharp declines in magnesium concentrations, particularly in red blood cells (Takase et al., 2004).

Environmental and sensory stressors such as noise exposure also increase magnesium loss through urine, lasting up to 48 hours post-exposure, suggesting that both psychological and physical stressors drain the same metabolic reserve.

TED translation: This is where Tired meets Diet, stress burns through magnesium, and low magnesium magnifies stress sensitivity, forming a self-perpetuating loop of fatigue and emotional tension.


Mechanisms: How Stress and Sleep Deplete Magnesium

During acute stress, the fight-or-flight response mobilises magnesium from cells into the bloodstream to support energy production and neuromuscular activity. However, prolonged or repeated stress leads to excretion rather than recycling, gradually lowering the bodyโ€™s magnesium reservoir.

Cortisol intensifies this cycle by stimulating the kidneys to excrete more magnesium, while inflammatory stress hormones further impair intestinal absorption. Over time, this results in lower intracellular magnesium in tissues such as muscle, brain, and heart, correlating with symptoms of tension, irritability, and restlessness.

Chronic sleep loss compounds the problem. Both short-term and long-term sleep deprivation reduce red blood cell magnesium levels, impairing vascular flow and contributing to the โ€œwired but tiredโ€ pattern common in anxiety and burnout (Takase et al., 2004).

Magnesium and Mental Health: Depression, ADHD, and Brain Aging

Magnesium and Depression

Epidemiological data from the National Health and Nutrition Examination Survey (NHANES) show that adults with the lowest magnesium intake have significantly higher rates of depression, particularly younger adults (Jacka et al., 2009).

A 2019 meta-analysis of 11 studies found that people with the lowest magnesium consumption were 81% more likely to experience depression than those with the highest (Derom et al., 2019).

Mechanistically, magnesium supports serotonin function, reduces neuroinflammation, and stabilises the excitatoryโ€“inhibitory balance of the brain, aligning with TEDโ€™s goal of calming hyperaroused affective circuits.

Magnesium and ADHD

Around 90% of individuals with ADHD show suboptimal magnesium levels, which correlate with irritability, restlessness, and sleep issues. Supplementing magnesium glycinate (125โ€“300 mg/day) for 4โ€“6 weeks can reduce symptoms and may even ease stimulant-related side effects.

Magnesium, Cognition, and Brain Aging

Recent research using UK Biobank data (n = 6,000) found that individuals with higher dietary magnesium intake (~550 mg/day) had larger grey matter and hippocampal volumes than those consuming ~350 mg/day, roughly the RDA (Peterson et al., 2023). These structural differences may reflect slower brain aging, roughly equivalent to one year of preserved neural integrity.

Complementary studies link higher magnesium intake to a lower risk of dementia and mild cognitive impairment in older adults, especially women (Yary et al., 2016). Magnesiumโ€™s neuroprotective effects likely stem from reducing oxidative stress, enhancing synaptic plasticity, and maintaining mitochondrial efficiency.


Magnesium and Sleep Physiology

Magnesium supports the onset and maintenance of sleep by activating GABAergic pathways and regulating melatonin synthesis. Randomised trials and meta-analyses show mixed outcomes likely due to differences in baseline magnesium status among participants, but studies consistently find that deficient individuals experience improved sleep quality following supplementation (Abbasi et al., 2012).

TED translation: Magnesium supports Tired by enhancing sleep restoration, Exercise by improving muscle relaxation, and Diet by regulating the energyโ€“stress feedback loop that shapes mood and focus.


Forms, Absorption, and Co-Nutrients

Not all magnesium forms are equally effective:

  • Best absorbed: Magnesium glycinate, citrate, malate, and L-threonate.
  • Less effective: Magnesium oxide (low absorption, laxative effect).

Optimise absorption by:

  • Taking magnesium with meals that include healthy fats or carbohydrates.
  • Co-supplementing vitamin D3 and vitamin B6, which enhance uptake.
  • Using divided doses throughout the day.
  • Avoiding enteric-coated capsules that delay intestinal release.

Magnesium L-threonate, in particular, crosses the bloodโ€“brain barrier and supports learning, memory, and synaptic density (Slutsky et al., 2010).

โš–๏ธ Dosage and Clinical Application

Target symptomRecommended formTypical dosageNotes
General stress / anxietyMagnesium glycinate or citrate250โ€“400 mg/daySplit doses with meals
Sleep disturbanceMagnesium glycinate or citrate200โ€“300 mg before bedEnhances relaxation
ADHD (children/adolescents)Magnesium glycinate powder125โ€“300 mg/dayGentle, better tolerated
Cognitive performanceMagnesium L-threonate1โ€“2 g/day (elemental Mg โ‰ˆ 150 mg)Crosses bloodโ€“brain barrier

Therapeutic effects typically take 3โ€“4 weeks as intracellular magnesium levels gradually normalise.

๐Ÿ’ก TED Translation

In TED terms:

  • Tired: Magnesium restores cellular energy and supports sleep recovery.
  • Exercise: Adequate magnesium improves muscle performance, oxygen delivery, and recovery.
  • Diet: Replenishing magnesium reduces stress reactivity and emotional fatigue.

Together, these effects stabilise the Bodyโ€“Brainโ€“Affect system, preventing the physiological overload that fuels shame-based and affective dysregulation.


Summary & Outlook

Magnesium is a cornerstone of emotional and metabolic balance. Chronic stress, disrupted sleep, and processed diets have created widespread deficiency that quietly undermines mental health.

Evidence now supports magnesium as a low-cost, physiologically synergistic intervention for anxiety, ADHD, depression, and stress-related fatigue. Within the NeuroAffective-CBTยฎ framework, it complements psychotherapeutic change by restoring the biological foundations of calm, focus, and resilience. When combined with structured TED interventions, consistent sleep, regular movement, and nutrient-dense meals, magnesium reinforces the physiological stability needed for enduring psychological growth.

Future directions include evaluating magnesium supplementation within integrated TED protocols for mood and stress-related disorders, bridging nutritional neuroscience with applied cognitive-behavioural intervention research.


โš ๏ธ Disclaimer

These articles are for educational purposes and do not replace medical or psychological evaluation. Individuals should consult their GP or prescribing clinician before starting supplementation, particularly if taking psychiatric or cardiovascular medication.


Series context: Mirea, D. (2025) TED Series, Part III: Omega-3 and Mental Health. NeuroAffective-CBTยฎ. Available at: https://neuroaffectivecbt.com/2025/10/18/ted-series-part-iii-omega-3-and-mental-health/ [Accessed 21 Oct 2025].

References

Abbasi, B., Kimiagar, M., Sadeghniiat, K., Shirazi, M.M., Hedayati, M. & Rashidkhani, B. (2012). The effect of magnesium supplementation on primary insomnia in elderly subjects: A double-blind placebo-controlled clinical trial. Journal of Research in Medical Sciences, 17(12), 1161โ€“1169.

Derom, M.-L. et al. (2019). Magnesium and depression: A systematic review and meta-analysis. Nutrients, 11(11), 2473.

Freeman, M.P. et al. (2006). Omega-3 fatty acids: Evidence basis for treatment and future research in psychiatry. Journal of Clinical Psychiatry, 67(12), 1954โ€“1967.

Jacka, F.N. et al. (2009). Association between magnesium intake and depression in adults. Australian and New Zealand Journal of Psychiatry, 43(1), 45โ€“52.

Kirkland, A.E., Sarlo, G.L. & Holton, K.F. (2018). The role of magnesium in neurological disorders. Nutrients, 10(6), 730.

Maguire, M. C. (2018) Challenges in the Diagnosis of Magnesium Status. International Journal of Trace Elements in Medicine and Biology, 50, pp. 7-13. Available at: https://pubmed.ncbi.nlm.nih.gov/30200431/ [Accessed 21 Oct 2025].

Mirea, D. (2023) Tired, Exercise and Diet Your Way Out of Trouble (TED Model). NeuroAffective-CBTยฎ. Available at: https://neuroaffectivecbt.com [Accessed 21 October 2025].

Mirea, D. (2025) TED Series, Part III: Omega-3 and Mental Health. NeuroAffective-CBTยฎ. Available at: https://neuroaffectivecbt.com/2025/10/18/ted-series-part-iii-omega-3-and-mental-health/ [Accessed 21 October 2025].

Slutsky, I. et al. (2010). Enhancement of learning and memory by elevating brain magnesium. Neuron, 65(2), 165โ€“177.

Takase, B. et al. (2004). Influence of chronic stress and magnesium status on cardiovascular function and blood flow. Clinical Cardiology, 27(12), 671โ€“677.

White, J.R. et al. (1992) โ€˜Adrenaline infusion reduces plasma magnesium concentrations in humansโ€™, Clinical Science, 82(3), pp. 299โ€“303.

Yary, T. et al. (2016) โ€˜Dietary magnesium intake and the risk of dementia: A longitudinal cohort studyโ€™, European Journal of Nutrition, 55(6), pp. 2143โ€“2151.

TED Series, Part III: “Omega-3 Fatty Acids and Emotional Stabilisation”

Abstract

Omega-3 fatty acids, particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have attracted growing attention as biologically plausible adjuncts in the treatment of mood and affective disorders. Beyond their cardiovascular benefits, omega-3s play a central role in neuronal membrane structure, inflammatory modulation, neurotransmission, and neuroplasticityโ€”processes directly relevant to emotional regulation, cognitive flexibility, and psychotherapeutic change.

Within the NeuroAffective-CBTยฎ framework, the TED (Tiredโ€“Exerciseโ€“Diet) model conceptualises lifestyle-related biological states as foundational regulators of the Bodyโ€“Brainโ€“Affect triangle. This third instalment of the TED series presents a narrative, theory-integrative review of omega-3 fatty acids as a psychometabolic factor influencing mood stability, cognitive performance, and affective resilience. Drawing on evidence from nutritional psychiatry, neuroscience, and clinical trials, the article examines differential roles of EPA and DHA in inflammation regulation, monoaminergic signalling, membrane fluidity, and stress responsivity.

Rather than proposing omega-3 supplementation as a stand-alone intervention, the article situates dietary fats within an ethically integrated, lifestyle-informed adjunct to psychotherapy. Practical TED-aligned strategies are discussed, including dosage considerations, omega-6 to omega-3 balance, habit integration, and synergy with sleep and exercise. It is argued that improving neuronal membrane health and reducing inflammatory load may stabilise the neurobiological conditions necessary for emotional learning, therapeutic engagement, and sustained neuroplastic change.

The paper concludes by outlining clinical implications for assessment and treatment planning within NeuroAffective-CBTยฎ, and highlights directions for future research examining how omega-3โ€“driven metabolic support may enhance psychotherapeutic outcomes.


Keywords: NeuroAffective-CBT, TED model, omega-3, fatty acids, EPA, DHA, emotional regulation, depression, neuroplasticity, psychometabolic health, lifestyle psychiatry, psychotherapy augmentation


New Research Findings and NeuroAffective-CBTยฎ Implications

In this third instalment of the TED (Tiredโ€“Exerciseโ€“Diet) Series, we explore how omega-3 fatty acids, particularly EPA and DHA, influence mood, cognition, and emotional regulation. Drawing from neuroscience, nutritional psychiatry, and the NeuroAffective-CBTยฎ framework, this article examines the growing evidence that dietary fats do more than protect the heart, they also nourish the mind. Blending practical TED applications with current clinical research, it offers clinicians and readers accessible strategies for integrating omega-3s into a new lifestyle-based approach to mental health.

Introducing TED in the NeuroAffective-CBTยฎ Framework

The TED (Tiredโ€“Exerciseโ€“Diet) model brings neuroscience, nutritional psychiatry, psychophysiology, and behavioural science into an integrated framework for emotional regulation and mental health. Within the broader NeuroAffective-CBTยฎ (NA-CBT) programme, TED is introduced early to support self-regulation and biological stability, the โ€œBodyโ€“Brainโ€“Affectโ€ triangle that underpins shame-based and affective disorders (Mirea, 2023; Mirea, 2025).

Earlier parts of this series explored the roles of creatine and insulin regulation in mood and cognition. This third instalment turns to omega-3 fatty acids, essential nutrients that play a central role in brain health, mood regulation, and anti-inflammatory balance.


Why Omega-3s Matter: The Brainโ€™s Structural Fat

When people hear the word โ€œfat,โ€ they often think of storage fat the kind that accumulates around the waist or organs. But the brain depends on an entirely different type: structural fat, which makes up the cell membranes of neurons. These membranes control how signals and chemicals move between brain cells, and their flexibility directly affects how efficiently neurons communicate (Huberman, 2023).

Omega-3 fatty acids, primarily EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) are the building blocks of these membranes. DHA maintains the structure of neurons, while EPA modulates inflammation and neurotransmission, influencing serotonin and dopamine signalling (Freeman et al., 2006; Mocking et al., 2020).

From a TED perspective, this is where Diet meets Affect: better membrane health and lower inflammation translate into improved emotional regulation, resilience to stress, and more stable mood patterns.

What Are EPA and DHA? (In Simple Terms)

When we talk about omega-3 fatty acids, weโ€™re mostly referring to two main types that the body uses for brain and heart health:

  • EPA (Eicosapentaenoic Acid): Think of EPA as the firefighter in your system. It helps reduce inflammation, calm overactive stress responses, and balance the brainโ€™s chemical messengers that affect mood. Studies show that getting enough EPA can help lift low mood and reduce symptoms of depression.
  • DHA (Docosahexaenoic Acid): DHA is more like the architect of your brain. It builds and maintains the structure of your brain cells, especially in areas responsible for memory, focus, and emotional stability. Itโ€™s crucial for brain development, but also for keeping adult brains flexible and resilient under stress.

Both EPA and DHA work together , EPA helps your brain feel better, and DHA helps it work better. You can get them from oily fish like salmon, sardines, and mackerel, or from algal oil if you follow a plant-based diet.

TED summary:
EPA supports the Diet part of TED by reducing emotional inflammation, those biochemical โ€œstormsโ€ that make you feel tense or flat. DHA supports the Tired part, helping your brain stay sharp and recover faster when youโ€™re mentally drained. Together, they strengthen the brainโ€“body connection that TED and NeuroAffective-CBTยฎ aim to restore. It is important to note that these supplements do not cure mental health conditions but can operate as adjuncts to therapy and medication, supporting recovery and prevention.


Evidence from Research: Depression, Focus, and Emotional Health

EPA and Depression – What Research Shows

A growing number of studies show that omega-3 supplements rich in EPA (about 1 gram per day) can noticeably reduce symptoms of depression. In some cases, the improvements are similar to those seen with common antidepressant medications in people with mild to moderate depression (Peet & Horrobin, 2002; Martins, 2009; Mocking et al., 2020).

One major study compared 1 gram of EPA to fluoxetine (Prozac), a widely used SSRI antidepressant and found that both worked equally well in improving mood. The group that combined EPA and fluoxetine together did even better, suggesting that omega-3s may enhance the effects of antidepressant treatment (Nemets et al., 2006).

Scientists believe EPA helps mood in several ways. It reduces inflammation in the body and brain (which can interfere with mood-regulating chemicals like serotonin) and keeps brain cell membranes flexible, allowing signals to travel more efficiently between neurons (Su et al., 2018).

TED perspective:
In TED terms, EPA acts like a โ€œmood stabiliserโ€ for the bodyโ€“brain system, calming internal inflammation, improving brain energy flow, and helping emotions move more smoothly through the day.

DHA and Cognition – The Brainโ€™s Structural Support

While EPA helps regulate mood and inflammation, DHA focuses more on the structure and performance of brain cells. Itโ€™s especially concentrated in brain areas responsible for memory, focus, and emotional balance, such as the prefrontal cortex and hippocampus.

Research shows that people who get enough DHA perform better on memory and attention tasks, particularly older adults or those who normally eat little fish or other omega-3 sources (Yurko-Mauro et al., 2010). DHA helps brain cells maintain flexible outer membranes, allowing them to communicate efficiently and adapt to new information, a process linked to learning and resilience.

When DHA levels are low, brain signalling can become sluggish, affecting concentration, motivation, and even emotional stability. Regular intake through food (like oily fish) or supplements can help restore this โ€œneural flexibility.โ€

TED summary:
In TED language, DHA supports the Tired and Diet domains, it helps the brain stay sharp, focused, and emotionally steady, especially under mental fatigue or stress. Think of it as giving your neurons the healthy fat insulation they need to keep your thoughts and emotions running smoothly.


โš–๏ธ Dosage, Ratios, and Practical Guidance

Most research suggests that taking between 1,000 and 2,000 mg per day of omega-3 fatty acids, especially formulations higher in EPA, can noticeably improve mood, focus, and general wellbeing (Martins, 2009; Mocking et al., 2020). For depression and emotional balance, experts often recommend that EPA make up at least 60% of the total omega-3 blend.

You can get these healthy fats from both food and supplements:

  • Natural sources: oily fish such as salmon, sardines, mackerel, and anchovies.
  • Plant-based options: chia seeds, flaxseed, walnuts, and algal oil (a vegan source rich in DHA).
  • Supplements: choose products that are molecularly distilled or third-party tested for purity and heavy-metal safety.

Because omega-3s are fat-soluble, they are best absorbed when taken with meals that include some healthy fat, such as avocado, eggs, or olive oil.

TED summary:
Omega-3s are like the high-quality oil in your brainโ€™s engine, helping neurons glide, communicate, and self-repair. For best results, pair consistent intake with the other TED elements: regular sleep (Tired), sports (Exercise), and nutrient-dense meals (Diet).


TED Practical Layer: Combining Nutrition with Behaviour

The TED approach is about how we live, not just what we take. Omega-3s work best when integrated into daily habits that support absorption, brain function, and emotional balance.

Here are a few practical ways to make that happen:

  1. Take omega-3s with meals that contain healthy fats.
    These fats, like those from eggs, olive oil, or avocado, help your body absorb EPA and DHA more efficiently.
  2. Pair with regular movement.
    Exercise increases enzymes that help omega-3s get into brain cells (Dyall, 2014). Even short daily walks or light strength training enhance this process.
  3. Balance omega-6 intake.
    Many modern diets contain too much omega-6 (from seed oils and processed foods), which can block omega-3 benefits. Aim for a lower omega-6 to omega-3 ratio (around 3:1) to reduce inflammation and support mood regulation (Simopoulos, 2016).
  4. Track mood and focus.
    Keep a brief weekly log of your energy, sleep, and emotional stability. Over a month or two, most people notice more mental clarity and steadier mood.

TED Translation:
Small, consistent actions matter. Taking omega-3s in the morning, walking regularly, and eating real, unprocessed foods all work together to open up the bodyโ€“brainโ€“affect loop, the very system TED aims to strengthen.

TED and NeuroAffective-CBTยฎ Integration

In the NeuroAffective-CBTยฎ (NA-CBT) framework, the TED model (Tired, Exercise, Diet) bridges the gap between the mind and body. Omega-3 supplementation fits naturally within the Diet domain, but its effects ripple across all three.

Low omega-3 levels have been linked to mood dysregulation, impulsivity, and emotional reactivity โ€” all central features of the bodyโ€“brainโ€“affect triangle that NA-CBT helps regulate (Mirea, 2025). Supporting neuronal health through dietary means therefore complements core CBT processes such as emotional awareness, behavioural activation, and self-compassion.

For clinicians, this integration can be structured through a few evidence-informed steps:

  1. Screen for dietary insufficiency or inflammation markers (e.g., high omega-6 intake, poor diet quality).
  2. Psychoeducate clients on the bodyโ€“mind connection โ€” explain how stabilising the bodyโ€™s biochemistry supports cognitive flexibility.
  3. Encourage gradual habit stacking, introducing omega-3s alongside TED routines (sleep hygiene, consistent exercise).
  4. Monitor outcomes, tracking not just mood changes, but energy, focus, and emotional resilience.

TED translation:
Think of omega-3s as emotional lubricants, subtle but powerful agents that help the brainโ€™s communication systems run smoothly, making it easier for CBT tools to โ€œclick.โ€ Combined with good sleep and movement, they form part of a whole-person therapy that builds physiological and psychological balance from the inside out.


Summary & Outlook

The evidence around omega-3 fatty acids, particularly EPA and DHA, continues to grow, positioning them as safe, low-cost, and biologically plausible adjuncts for improving mood, cognition, and emotional regulation. In depression, EPA-dominant formulations (~1 g/day) have demonstrated antidepressant effects comparable to SSRIs in mild-to-moderate cases (Nemets et al., 2006; Mocking et al., 2020). DHA, on the other hand, plays a structural and neuroprotective role, supporting long-term cognitive resilience.

From the TED viewpoint, omega-3s bridge physiology and psychology. They not only support neuronal efficiency but also improve the emotional flexibility required for therapeutic change, embodying TEDโ€™s principle that lifestyle science and psychotherapy are most effective when integrated.

Within the TED (Tiredโ€“Exerciseโ€“Diet) framework, omega-3s exemplify how dietary micro-interventions can amplify psychotherapeutic outcomes. Combined with good sleep, consistent exercise, and emotional processing, the three TED pillars, they help restore the physiological stability necessary for deeper psychological change.

For clinicians, the takeaway is practical:

  • Screen for dietary quality and omega-3 intake early in assessment.
  • Encourage balanced omega-3 to omega-6 ratios.
  • Integrate nutritional strategies alongside CBT interventions.
  • Track progress using both subjective (mood, focus) and objective (diet logs) measures.

Final thought from TED:
Omega-3s donโ€™t just feed the body, they fuel the brain. When woven into the TED lifestyle and NeuroAffective-CBTยฎ framework, they help restore energy, sharpen thinking, and smooth the emotional landscape, supporting the long-term goal of mindโ€“body regulation.


โš ๏ธ Disclaimer

These articles do not replace medical or psychological assessment. Regular health checks, including blood lipid and inflammatory markers, are recommended. Always consult your GP or prescribing clinician before starting supplementation, particularly if taking psychiatric medication or anticoagulants.


References

Allen, P.J., Dโ€™Anci, K.E. & Kanarek, R.B. (2024) โ€˜Creatine supplementation in depression: bioenergetic mechanisms and clinical prospectsโ€™, Neuroscience & Biobehavioral Reviews, 158, 105308.
Dyall, S.C. (2014) โ€˜Long-chain omega-3 fatty acids and the brain: A review of the independent and shared effects of EPA, DHA and ALAโ€™, Frontiers in Aging Neuroscience, 6, 52.
Freeman, M.P. et al. (2006) โ€˜Omega-3 fatty acids: Evidence basis for treatment and future research in psychiatryโ€™, Journal of Clinical Psychiatry, 67(12), pp. 1954โ€“1967.
Huberman, A. (2023) Food and Supplements for Mental Health. The Huberman Lab Podcast, Stanford University.
Martins, J.G. (2009) โ€˜EPA but not DHA appears to be responsible for the efficacy of omega-3 supplementation in depressionโ€™, Journal of Affective Disorders, 116(1โ€“2), pp. 137โ€“143.
Mirea, D. (2023) Tired, Exercise and Diet Your Way Out of Trouble (TED Model). NeuroAffective-CBTยฎ. ResearchGate.
Mirea, D. (2025) TED Series, Part III: Omega-3 and Mental Health. NeuroAffective-CBTยฎ. Available at: https://neuroaffectivecbt.com/2025/10/18/ted-series-part-iii-omega-3-and-mental-health/ [Accessed 18 October 2025].
Mocking, R.J.T. et al. (2020) โ€˜Meta-analysis and meta-regression of omega-3 polyunsaturated fatty acid supplementation for major depressive disorderโ€™, Translational Psychiatry, 10, 190.
Nemets, B., Stahl, Z. & Belmaker, R.H. (2006) โ€˜Addition of omega-3 fatty acid to maintenance medication treatment for recurrent unipolar depressive disorderโ€™, American Journal of Psychiatry, 163(6), pp. 1098โ€“1100.
Simopoulos, A.P. (2016) โ€˜An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity and metabolic syndromeโ€™, Nutrients, 8(3), 128.
Su, K.P. et al. (2018) โ€˜Omega-3 fatty acids in major depressive disorder: A preliminary double-blind, placebo-controlled trialโ€™, European Neuropsychopharmacology, 28(4), pp. 502โ€“510.
Yurko-Mauro, K. et al. (2010) โ€˜Beneficial effects of docosahexaenoic acid on cognition in age-related cognitive declineโ€™, Alzheimerโ€™s & Dementia, 6(6), pp. 456โ€“464.

TED Series, Part II: “Insulin Resistance and Mental Health”


Abstract

The TED (Tiredโ€“Exerciseโ€“Diet) model is not a peripheral wellness add-on but a formally articulated component of the NeuroAffective-CBTยฎ framework. Daniel Mirea introduced TED in NeuroAffective-CBTยฎ publications such as Tired, Exercise and Diet Your Way Out of Trouble, where it is presented as a core regulatory module linking body, brain, and affect within the broader NA-CBT schema (Mirea, 2023; Mirea, 2025).

Within the six-module NeuroAffective-CBTยฎ programme, TED provides a structured way of translating insights from neuroscience, nutritional psychiatry, psychophysiology, and behavioural science into clinically usable lifestyle interventions. By organising these domainsโ€”sleep, movement, and dietโ€”under a single conceptual umbrella, TED offers clinicians and clients a flexible, evidence-informed scaffold for addressing biological factors that interact with emotional learning and self-regulation.

A central assumption of the TED model is that lifestyle-related physiological states meaningfully shape affective capacity, motivational tone, and cognitive flexibility. In clinical populations characterised by chronic internalised shame, self-loathing, affective instability, or low self-regulatory capacity, metabolic strain, sleep disruption, and sedentary behaviour frequently coexist with psychological distress. TED provides a framework for recognising and working with these interactions alongside, rather than instead of, psychotherapeutic processes.

If Part I of the TED series examined creatine as a bioenergetic substrate relevant to brain energy and mood regulation, Part II turns to a more prevalent and system-wide metabolic challenge: insulin resistance. The sections that follow explore how insulin dysregulation intersects with emotional and cognitive functioning, and how TED-aligned lifestyle levers may be used to address these dynamics within an integrated psychotherapeutic context.

Keywords: NeuroAffective-CBT, TED model, insulin resistance, psychometabolic health, affect regulation, depression, fatigue, gutโ€“brain axis, lifestyle interventions, psychotherapy augmentation


Introducing TED in the NeuroAffective-CBTยฎ Framework

The TED (Tiredโ€“Exerciseโ€“Diet) model is not a peripheral wellness concept but a formally articulated component of the NeuroAffective-CBTยฎ framework. Daniel Mirea first introduced TED in NeuroAffective-CBTยฎ publications such as Tired, Exercise and Diet Your Way Out of Trouble, where it is presented as a core module linking body, brain, and affect within the NA-CBT schema (Mirea, 2023; Mirea, 2025).

Within the broader NeuroAffective-CBTยฎ programme, which comprises six interrelated modules, TED is embedded early in treatment to support psychotherapeutic work targeting chronic internalised shame, self-loathing, affect dysregulation, and self-regulatory vulnerabilities (Mirea, 2023). The underlying clinical rationale is that lifestyle-related physiological states meaningfully influence emotional stability, motivational capacity, and responsiveness to affect-focused and cognitive interventions. Consistent with findings from lifestyle psychiatry, modifying sleep, movement, and nutritional patterns may therefore enhance and stabilise psychotherapeutic gains (Firth et al., 2020; Lopresti, 2019).

TED integrates insights from multiple domains, including neuroscience (e.g., gutโ€“brain signalling and reward pathways), nutritional psychiatry, psychophysiology (e.g., the effects of sleep deprivation and fatigue), and behavioural science (e.g., habit formation and conditioning). By framing sleep, movement, and diet within a single, coherent model, TED provides clinicians and clients with a flexible, evidence-informed scaffold for lifestyle-oriented intervention that can be integrated alongside standard psychotherapeutic techniques.

If Part I of the TED series examined creatine as a bioenergetic substrate relevant to brain energy availability and mood regulation (Candow et al., 2022; Allen et al., 2024), Part II turns to a more prevalent and system-wide metabolic challenge: insulin resistance. The sections that follow explore its links to emotional and cognitive functioning, and consider how TED-aligned lifestyle levers may be used to address psychometabolic constraints within an integrated NeuroAffective-CBTยฎ framework.


Insulin Resistance & Mental Health: Why It Matters

Epidemiology & Hidden Burden

The World Health Organization estimates over one billion people globally live with diabetes or prediabetes, conditions rooted in chronic insulin resistance. Though early stages may lack dramatic physical symptoms, substantial evidence ties insulin resistance to mood disturbances: irritability, poor sleep, low motivation, brain fog, diminished self-confidence, depression, and anxiety.

Clinically, many mental health practitioners begin treatment for depression or anxiety without ordering metabolic labs, thereby potentially missing a root driver. Treating symptoms without addressing underlying insulin dysregulation may limit long-term efficacy.

Dietary Drivers & Dopamine Links

Modern diets, usually rich in refined sugars, starches, and processed carbohydrates, easily produce repeated glucose spikes. These not only tax metabolic systems but elicit strong dopamine responses, reinforcing cravings and behaviours analogous to substance addiction (Smith & Robbins, 2020). Sugar โ€œaddictionโ€ is increasingly framed as a real phenomenon, with parallels to addictive substances in neurobiology and behaviour (Kempton et al., 2024).

Excess glucose that is not immediately utilised is stored as fat, contributing to chronic inflammation, glycation (a form of molecular โ€œagingโ€), and metabolic stress. Over time, these processes damage organs, accelerate aging, and intersect with psychiatric vulnerability.

Mechanistic Cascade: From Glucose Spikes to Neural Dysregulation

When glucose surges, the pancreas secretes insulin to clear it from the bloodstream into liver, muscle, and fat tissue. In insulin resistance, muscle and liver cells become less responsive, so insulin must work harder. Over time, insulinโ€™s compensatory drive fails, and fat accumulation accelerates, especially visceral adiposity. Because skeletal muscle has high metabolic demand, individuals who train or have greater lean mass may buffer this process somewhat, but they are not immune.

In insulin resistance, cells degrade signalling pathways. One key culprit is diacylglycerol (DAG): metabolic overflow in muscle and liver leads to DAG accumulation, which impairs insulin receptor signalling (Schulman et al., 2019). Imagine an insulin โ€œkeyโ€ (insulin molecule) trying to unlock a blocked โ€œcar doorโ€ (GLUT4 transporter) but the signal pathway is jammed by DAG sludge.

From a TED viewpoint, knowingly or unknowingly, many people live in this metabolic state: they feel fatigue or fogginess after meals, gain โ€œstubbornโ€ fat, crave sweets, and feel stuck. Their cells are refusing insulinโ€™s โ€œkeyโ€, causing chronic internal stress that can manifest in mood, cognition, and energy dysregulation.

Prevalence & Clinical Relevance

In a striking study of 18 to 44-year-olds, 44.8 % were estimated to have insulin resistance; notably, half of them were not obese, demonstrating the โ€œthin-outside, fat-insideโ€ phenotype. That means many lean individuals may silently carry metabolic dysfunction. Importantly, several studies suggest insulin resistance is a stronger predictor of cardiovascular disease than LDL cholesterol (Reaven, 2011; Wang et al., 2022).

As insulin resistance worsens, elevated glycation, oxidative stress, inflammatory markers, and microvascular dysfunction set in. In the brain, these intersect with neuroinflammation, microglial activation, and compromised mitochondrial function, pathways implicated in depression and cognitive decline (Morris et al., 2017; Louie et al., 2023).


Intervention Levers: What TED Can Do (and What the Research Suggests)

Below is a revised structure of actionable insights, rooted in emerging metabolic neuroscience, that align well with the TED domains.

1. Postprandial Movement: The Manual โ€œTesla Doorโ€ Activation

A 10 to 20 minute walk after meals activates AMPK signalling. Adenosine monophosphate-activated protein kinase โ€“ an enzyme that helps your body use energy more efficiently and draw sugar from the blood into muscles, thus allowing glucose to enter muscle cells independently of insulin. In this metaphor, walking acts as a manual opener of the automatic Tesla door, granting access when the remote control (or the insulin) fails. This simple, low-risk strategy is well supported by metabolic research (Hawley & Holloszy, 2009; Richter & Hargreaves, 2013).

2. Carbohydrate Timing & Contextual Use

Use fast-digesting carbohydrates selectively (e.g. white rice or ripe bananas) during periods of high energy demand, such as intra-workout or immediately post-exercise, when insulin sensitivity is highest. This ensures glucose is directed into active muscle tissue rather than exacerbating systemic dysregulation. In other words, this refers to rare, strategic use in small amounts, only when the body can efficiently utilise glucose for fuel.

Two good examples of fast-digesting carbohydrates, often called high-glycaemic index carbs, are:

  1. White rice โ€“ breaks down quickly into glucose, providing a rapid spike in blood sugar and energy.
  2. Bananas (ripe) โ€“ contain simple sugars like glucose and fructose that are quickly absorbed, making them ideal before or during exercise.

Other common examples include white bread, honey, dextrose, sports drinks, or small amounts of fruit juice. This guidance, however, does not apply to individuals on a strict weight-loss programme. In such cases, the goal is to reduce overall glucose exposure and promote fat metabolism, meaning fast-digesting carbohydrates are best avoided.

Emerging evidence suggests that consuming a small amount of vinegar, around one teaspoon diluted in water, before a high-carbohydrate or sweet meal can help moderate postprandial (after-meal) glucose spikes by slowing gastric emptying and improving insulin sensitivity (Johnston et al., 2004; Mitrou et al., 2010). This simple intervention, often highlighted by metabolic educators such as โ€œJesse the Glucose Goddessโ€, aligns with the TED modelโ€™s focus on practical, low-cost strategies to stabilise energy and mood through metabolic regulation.

3. Rate-limiting Absorption: Protein + Soluble Fibre

By combining carbs with protein and soluble fibre (e.g. psyllium, chia, pectin), you slow the influx of glucose, turning a firehose into a gentle stream. This helps prevent peaks and DAG formation. This method is well supported in glycaemic control literature (Wolever et al., 2008; Jenkins et al., 2018).

Example: Oatmeal Power Bowl

Carbohydrate: Rolled oats (complex carbs that digest steadily)

Protein: Greek yoghurt or a scoop of whey protein mixed in

Soluble fibre: Chia seeds or ground flaxseeds (both rich in soluble fibre)

Healthy fats (optional): A few almonds or a teaspoon of nut butter

Extras: Add sliced banana or berries for natural sweetness

Alternative savoury example

  • Carbohydrate: Quinoa or sweet potato
  • Protein: Grilled salmon, chicken, or tofu
  • Soluble fibre: Steamed vegetables (broccoli, carrots) + half an avocado or lentils

TED perspective: this combo reduces post-meal glucose peaks, supports satiety, and keeps insulin responses smooth, exactly what TED aims for.

4. Sludge Clearance & Mitochondrial Support

  • Trimethylglycine (TMG): May enhance methylation, support mitochondrial function, and assist in DAG clearance pathways (Ueland et al., 2019).
  • Cinnamon: Contains insulin mimetic compounds; small trials suggest improved glycaemic control and insulin sensitivity when used judiciously (Khan et al., 2003).
  • Carnosine: Serves as a buffer and antiglycation agent, intercepting reactive sugar moieties before they damage tissues (Hipkiss, 2009).

5. Master Reset: Intermittent Fasting / Time-Restricted Eating

Caloric restriction or “fasting” regimes although not always recommended if one suffers from high-blood pressure (e.g. 16:8, 24-h fasts) can however flip metabolic switches: lower insulin, upregulate autophagy (cellular cleanup), and reduce DAG accumulation. Animal and human studies show fasting improves insulin sensitivity, clears metabolic โ€œsludge,โ€ and supports mitochondrial health (Longo & Panda, 2016; de Cabo & Mattson, 2019).

6. Synergy of TED: Sleep, Exercise, Diet & Metabolic Hygiene

  • Sleep deprivation impairs insulin sensitivity and raises cortisol, further dysregulating glucose control (Spiegel et al., 1999).
  • Resistance and aerobic exercise enhance insulin receptivity and mitochondrial density (Hawley & Lessard, 2008).
  • Diet quality (minimally processed foods, low glycaemic load) is central to preventing glucose surges.

7. Gutโ€“Brain Signalling & Cravings

Emerging research identifies neuropod cells in the gut lining that respond to nutrients (e.g. glucose, amino acids) and send electrical signals to the brain, influencing cravings, reward, and hedonic experience (Kaelberer et al., 2020). This offers a mechanistic bridge: diet choices influence not only metabolism but โ€œwhat feels goodโ€ and how the brain interprets internal states.


Implications for Clinical Practice & Research

From a clinical standpoint, incorporating metabolic screening into the psychological assessment process may help identify psychometabolic contributors to fatigue, irritability, mood instability, and depressive symptoms that might otherwise be attributed solely to psychosocial factors. Measures such as fasting insulin, HbA1c, lipid profiles, and inflammatory markers can provide valuable contextual data when affective symptoms appear treatment-resistant, cyclical, or disproportionate to identifiable stressors. Recognising insulin resistance as a contributor to emotional and cognitive dysregulation also carries implications for clinician training and interdisciplinary collaboration within mental health care.

Within treatment, TED-aligned behavioural strategiesโ€”such as post-meal movement, carbohydrate pacing, fibre pairing, time-restricted eating, and structured exerciseโ€”may be introduced early as adjunctive supports to psychotherapy. When individualised, ethically applied, and appropriately monitored, these interventions may help stabilise metabolic and neuroenergetic conditions that facilitate emotional regulation, motivation, and engagement with affect-focused and cognitive interventions.

From a research perspective, controlled clinical trials are needed to determine whether improving insulin sensitivity enhances outcomes in depression and anxiety, how metabolic change interacts with established psychotherapeutic approaches, and whether emerging mechanisms such as gutโ€“brain signalling via neuropod cells mediate changes in craving, reward processing, and motivation. Addressing these questions is essential for establishing the clinical relevance and mechanistic validity of TED-informed metabolic interventions.


Summary & Outlook

Insulin resistance extends beyond a purely metabolic condition and likely contributes to mood dysregulation, fatigue, cravings, and cognitive impairment through its effects on cellular energy availability, inflammatory signalling, and reward-related neurocircuitry. Within the TED framework, these psychological manifestations are understood as downstream consequences of impaired metabolic regulation that constrains affect tolerance and emotional learning.

Rather than advocating rigid dietary prescriptions, this article frames lifestyle-based metabolic regulation as a clinically meaningful adjunct to psychotherapy. By improving insulin sensitivity and stabilising metabolic flux, interventions such as movement, meal pacing, fibre intake, and strategically applied fasting may help restore the physiological conditions necessary for sustained therapeutic engagement and neuroplastic change.

At a mechanistic level, pathways involving the gutโ€“brain axis, intracellular signalling disruptions such as diacylglycerol accumulation, and mitochondrial dysfunction provide a coherent bridge between metabolic state and mental health. Together, these processes illustrate how metabolic inputs shape not only physical health, but also motivation, affective stability, and cognitive clarity.

Future research should evaluate TED-driven metabolic interventions in clinical populations using controlled designs and objective biomarker endpointsโ€”including measures of insulin sensitivity, inflammatory markers, and neuroimaging indices such as magnetic resonance spectroscopyโ€”to clarify causal pathways and clinical utility.


Biochemical Terms with Plain-Language Clarifications

AMPK adenosine monophosphate-activated protein kinase (an enzyme that acts as the bodyโ€™s โ€œenergy switch,โ€ helping cells burn fuel efficiently and move sugar from the bloodstream into muscles)

GLUT4 glucose transporter type 4 – a โ€œdoorwayโ€ protein that opens to let glucose enter muscle and fat cells when activated by insulin or exercise

DAG diacylglycerol – a fat-like molecule that builds up inside cells and โ€œjamsโ€ insulin signals, making it harder for the body to use glucose properly

Autophagy – a natural โ€œcellular recyclingโ€ process where old or damaged cell parts are broken down and reused to keep cells healthy

Glycation – a chemical process where excess sugar sticks to proteins and tissues, accelerating ageing and inflammation)

Mitochondria – tiny โ€œpower stationsโ€ inside cells that turn food into usable energy and are essential for brain and muscle function)

Neuropod cells – specialised sensory cells in the gut lining that communicate directly with the brain via electrical signals, influencing hunger, cravings, and mood

Carnosine – a naturally occurring compound found in muscle and brain tissue that helps protect cells from sugar-related damage and oxidative stress

TMG (Trimethylglycine) – a compound derived from beets that supports liver and mitochondrial function, helping cells process fats and sugars more effectively

โš ๏ธ Disclaimer

This article is not a substitute for professional medical or psychological assessment and care. Regular health checks and blood tests with your GP or family physician are essential, including from adolescence onward given rising rates of metabolic conditions (e.g., pre-diabetes, diabetes). Where appropriate, seek guidance from qualified professionals such as a GP, psychiatrist, registered nurse or nutritionist, or indeed a NeuroAffective-CBTยฎ therapist, who can interpret your health data and support sustainable lifestyle changes. Supplements and behavioural strategies discussed here cannot and should not replace prescribed psychiatric or medical treatments; they function as potential adjuncts within a supervised care plan. Used responsibly, TED-aligned interventions may enhance wellbeing and resilience, but responses vary and should always be monitored by a healthcare professional.

References

Allen, P.J., Dโ€™Anci, K.E. & Kanarek, R.B., 2024. Creatine supplementation in depression: bioenergetic mechanisms and clinical prospects. Neuroscience & Biobehavioral Reviews, 158, 105308. https://doi.org/10.1016/j.neubiorev.2024.105308

Candow, D.G., Forbes, S.C., Chiang, E., Farthing, J.P. & Johnson, P., 2022. Creatine supplementation and aging: physiological responses, safety, and potential benefits. Nutrients, 14(6), 1218. https://doi.org/10.3390/nu14061218

de Cabo, R. & Mattson, M.P., 2019. Effects of intermittent fasting on health, aging, and disease. New England Journal of Medicine, 381(26), 2541โ€“2551. https://doi.org/10.1056/NEJMra1905136

Firth, J. et al., 2020. A meta-review of lifestyle psychiatry: the role of exercise, smoking, diet and sleep in mental disorders. World Psychiatry, 19(3), 360โ€“380. https://doi.org/10.1002/wps.20773

Hawley, J.A. & Holloszy, J.O., 2009. Exercise: itโ€™s the real thing! Nutrition Reviews, 67(Suppl 2), S172โ€“S178. https://doi.org/10.1111/j.1753-4887.2009.00170.x

Hawley, J.A. & Lessard, S.J., 2008. Exercise training-induced improvements in insulin action. Acta Physiologica, 192(1), 127โ€“135. https://doi.org/10.1111/j.1748-1716.2007.01783.x

Hipkiss, A.R., 2009. Carnosine and its possible roles in nutrition and health. Advances in Food and Nutrition Research, 57, 87โ€“154. https://doi.org/10.1016/S1043-4526(09)57003-1

Jenkins, D.J.A. et al., 2018. Effects of high-fibre foods on glycaemic control. Lancet Diabetes & Endocrinology, 6(10), 794โ€“807. https://doi.org/10.1016/S2213-8587(18)30135-0

Johnston, C.S., Kim, C.M. & Buller, A.J., 2004. Vinegar improves insulin sensitivity to a high-carbohydrate meal in subjects with insulin resistance or type 2 diabetes. Diabetes Care, 27(1), pp.281โ€“282.

https://doi.org/10.2337/diacare.27.1.281Kaelberer, M.M. et al., 2020. Gut neuropod cells: sensory transducers that couple the gut to the brain. Cell, 182(4), 947โ€“949. https://doi.org/10.1016/j.cell.2020.07.035

Khan, A. et al., 2003. Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care, 26(12), 3215โ€“3218. https://doi.org/10.2337/diacare.26.12.3215

Kempton, M.J., Fusar-Poli, P. & Allen, P., 2024. Neurobiology of food reward and addiction. Trends in Neurosciences, 47(2), 112โ€“126. https://doi.org/10.1016/j.tins.2023.11.003

Longo, V.D. & Panda, S., 2016. Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metabolism, 23(6), 1048โ€“1059. https://doi.org/10.1016/j.cmet.2016.05.001

Lopresti, A.L., 2019. A review of lifestyle factors that contribute to important pathways in depression: diet, sleep and exercise. Journal of Affective Disorders, 256, 38โ€“44. https://doi.org/10.1016/j.jad.2019.05.066

Louie, A.M., Ramos-Loyo, J. & Ketter, T.A., 2023. Insulin resistance and depression: shared pathways and implications. Frontiers in Psychiatry, 14, 1123657. https://doi.org/10.3389/fpsyt.2023.1123657

Mirea, D., 2023. Tired, Exercise and Diet Your Way Out of Trouble (T.E.D.) model. NeuroAffective-CBTยฎ. Available at: https://www.researchgate.net/publication/382274002_Tired_Exercise_and_Diet_Your_Way_Out_of_Trouble_T_E_D_model_by_Mirea [Accessed 17 Oct 2025].

Mirea, D., 2025. Why your brain makes you crave certain foods (and how โ€œTEDโ€ can help you rewire itโ€ฆ). NeuroAffective-CBTยฎ, 17 September. Available at: https://neuroaffectivecbt.com/2025/09/17/why-your-brain-makes-you-crave-certain-foods/ [Accessed 17 Oct 2025].

Mitrou, P., Petsiou, E., Papakonstantinou, E., Maratou, E., Lambadiari, V., Dimitriadis, P. & Raptis, S.A., 2010. Vinegar consumption increases insulin-stimulated glucose uptake by the forearm muscle in humans with type 2 diabetes. European Journal of Clinical Nutrition, 64(8), pp.871โ€“877. https://doi.org/10.1038/ejcn.2010.102

Morris, G., Berk, M., Carvalho, A.F. et al., 2017. The role of mitochondria in mood disorders. Bipolar Disorders, 19(7), 577โ€“596. https://doi.org/10.1111/bdi.12534

Reaven, G.M., 2011. Insulin resistance: the link between obesity and cardiovascular disease. Medical Clinics of North America, 95(5), 875โ€“892. https://doi.org/10.1016/j.mcna.2011.06.002

Richter, E.A. & Hargreaves, M., 2013. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiological Reviews, 93(3), 993โ€“1017. https://doi.org/10.1152/physrev.00038.2012

Schulman, G.I. et al., 2019. Diacylglycerol activation of PKCฮต mediates hepatic insulin resistance. Physiological Reviews, 99(2), 511โ€“536. https://doi.org/10.1152/physrev.00061.2017

Smith, D.G. & Robbins, T.W., 2020. The neurobiological basis of obesity and binge eating. Physiology & Behavior, 222, 112978. https://doi.org/10.1016/j.physbeh.2020.112978

Spiegel, K., Leproult, R. & Van Cauter, E., 1999. Impact of sleep debt on metabolic and endocrine function. Lancet, 354(9188), 1435โ€“1439. https://doi.org/10.1016/S0140-6736(99)01376-8