TED Series, Part V: Vitamin C and Mental Health: Neurotransmitters, Stress, and Emotional Resilience

Daniel Mirea (October 2025)
NeuroAffective-CBTยฎ | https://neuroaffectivecbt.com


Abstract

In this fifth instalment of TED (Tiredโ€“Exerciseโ€“Diet) series, of the NeuroAffective-CBTยฎ project, we explore the multifaceted role of Vitamin C in mental health. Emerging evidence suggests optimal neurocognitive benefits occur at daily intakes of 200โ€“500 mg. Beyond its reputation as an immune booster, Vitamin C functions as a key modulator of neurotransmitter synthesis, oxidative stress, and immuneโ€“brain communication. Drawing on recent research in neuroscience, nutritional psychiatry, and psychoneuroimmunology, this article examines how Vitamin C supports emotional regulation, cognitive performance, and resilience under chronic stress. Integrating this evidence within the NeuroAffective-CBTยฎ (NA-CBT) framework, we highlight Vitamin C as a practical component of lifestyle-oriented psychotherapy, bridging nutrition, physiology, and affect regulation.


Introducing TED in the NeuroAffective-CBTยฎ Framework

The TED model (Tiredโ€“Exerciseโ€“Diet) synthesises neuroscience, psychophysiology, and behavioural science into an integrated scaffold for emotional regulation and biological stability. Within NeuroAffective-CBTยฎ, TED interventions are introduced early in therapy to restore homeostasis across the Bodyโ€“Brainโ€“Affect triangle, the physiological foundation of affective regulation, motivation, and self-concept (Mirea, 2023; Mirea, 2025).

Following earlier TED instalments on Creatine (Part I), Insulin Resistance (Part II), Omega-3 (Part III), and Magnesium (Part IV), this chapter focuses on Vitamin C, a micronutrient that bridges diet, stress, immunity, and cognition. Despite being essential to brain and body function, humans have lost the genetic capacity to synthesise Vitamin C, making dietary intake or supplementation critical for maintaining mental and metabolic health.


Evolutionary Context: A Necessary Deficiency

Unlike most mammals, humans lack the gulonolactone oxidase gene required for endogenous Vitamin C synthesis. Evolutionarily, this was likely pruned due to ancestral diets rich in fruits and vegetation (Harrison & May, 2009). Consequently, Vitamin C must be obtained through food, primarily fruits, vegetables, and, more recently, supplementation.

This evolutionary dependency aligns with human dietary anatomy: our dentition and digestive tract are optimised for plant-based, nutrient-dense foods rather than raw animal flesh. Thus, our reliance on Vitamin C-rich diets is biologically hardwired, linking nutrition directly to both immune and psychological resilience.

From a TED perspective, this represents a fundamental Dietโ€“Affect relationship: emotional and physiological stability rely on the consistent intake of nutrients we cannot make ourselves.


Vitamin C and Neurotransmitter Synthesis

Vitamin C plays a pivotal biochemical role in neurotransmitter regulation. It acts as a cofactor for dopamine ฮฒ-hydroxylase, the enzyme converting dopamine into norepinephrine (adrenaline), essential for motivation, attention, and stress response (Otte et al., 2016). It is also necessary for the metabolism of tryptophan into serotonin, the neurotransmitter most associated with emotional regulation and well-being (Young, 2020).

Low Vitamin C levels have been linked to reduced serotonin and norepinephrine activity, contributing to low mood, fatigue, and anxiety. In turn, adequate Vitamin C enhances the synthesis and stability of these neurotransmitters, improving energy and affective balance.

๐Ÿ’ก TED Translation:
Vitamin C acts as a โ€œbiochemical connectorโ€ in the Tired and Diet domains, fuelling the brainโ€™s ability to convert nutrients into emotion-regulating signals. When Vitamin C is low, dopamine and serotonin pathways slow down, leading to fatigue, irritability, and low resilience under stress.


Stress, Cortisol, and Oxidative Load

Vitamin C is among the most concentrated antioxidants in the brain and adrenal glands, the latter being the bodyโ€™s cortisol-producing centres. Chronic psychological or physical stress depletes Vitamin C rapidly, while low Vitamin C status impairs the bodyโ€™s ability to modulate cortisol output (Brody et al., 2002).

Experimental studies show that supplementation can reduce stress-induced cortisol elevations and improve mood under high-pressure conditions, such as academic or occupational stress (de Oliveira et al., 2015). The relationship is reciprocal: stress depletes Vitamin C, and deficiency heightens the physiological stress response.

๐Ÿ’ก TED Translation:
This is where Tired meets Diet: stress โ€œburns throughโ€ Vitamin C reserves, and depletion feeds back into higher cortisol and anxiety. Maintaining adequate Vitamin C helps keep the stress response efficient rather than overreactive.


Vitamin C, Immunity, and the Gutโ€“Brain Axis

Vitamin C supports both innate and adaptive immunity, promoting leukocyte function, barrier integrity, and antioxidant defence (Carr & Maggini, 2017). Its influence extends to the gutโ€“brain axis, the bidirectional communication between intestinal microbiota and the central nervous system.

Figure 1: The Vitamin Cโ€“Neurotransmitterโ€“Stress Interaction Loop

Deficiency in Vitamin C increases intestinal permeability (โ€œleaky gutโ€) and systemic inflammation, which can trigger neuroinflammatory cascades linked to depression and anxiety (Otte et al., 2016). Adequate Vitamin C intake may therefore modulate mood indirectly by maintaining gut integrity and reducing inflammatory load.

๐Ÿ’ก TED Translation:
Within TED, Vitamin C stabilises both the body and the mind, supporting the โ€œDietโ€ domain by maintaining gut health and the โ€œAffectโ€ domain by reducing the inflammatory signals that disrupt mood regulation.


Epigenetic and Cognitive Dimensions

Emerging research suggests Vitamin C contributes to epigenetic regulation, influencing DNA methylation and histone modification processes involved in early neurodevelopment and long-term emotional outcomes (de Beni et al., 2021).

High concentrations of Vitamin C are found in the brain and cerebrospinal fluid, particularly in the hippocampus and cortex, regions essential for memory and emotional learning. Even when blood levels fall, the brain retains Vitamin C preferentially, highlighting its role in preserving neurocognitive function under stress.

๐Ÿ’กTED takeaway:

Your brain treats Vitamin C like gold, it holds onto it even when the rest of your body runs low. Thatโ€™s because Vitamin C helps protect brain cells, supports memory, and keeps emotional circuits flexible under stress. New research shows that Vitamin C doesnโ€™t just work in the moment, it may even influence how certain genes involved in brain development and emotional balance get โ€œswitched onโ€ or โ€œoff.โ€ In simple terms, Vitamin C helps your brain stay adaptable, protecting your mood and mental sharpness over time. In TED language, vitamin C fuels both Diet and Affect, nourishing your brainโ€™s chemistry while helping it handle lifeโ€™s stress without burning out.


Clinical and TED Practical Guidance

Recommended dietary intake for adults is 75โ€“90 mg/day, but emerging data suggest higher doses (200โ€“500 mg/day) may optimise antioxidant and neurochemical benefits (Carr & Rowe, 2020).

Natural sources:

  • Citrus fruits (orange, lemon, grapefruit)
  • Kiwi, strawberries, papaya
  • Bell peppers, broccoli, spinach, kale

Supplementation:

  • Divide doses (e.g., 250 mg twice daily) for better absorption.
  • Combine with flavonoid-rich foods (e.g., berries, green tea) to enhance bioavailability.
  • Avoid smoking and chronic alcohol use, which accelerate Vitamin C depletion.

๐Ÿ’กTED Translation:
Think of Vitamin C as your brainโ€™s โ€œdaily maintenance nutrientโ€, keeping neurotransmitters balanced, inflammation low, and energy steady. Consistent intake, alongside sleep and exercise regulation, reinforces the biological base for emotional stability and therapeutic progress. This is such a vital hormone, clinicians may consider psychoeducating clients on Vitamin Cโ€™s stress-buffering role when addressing fatigue or anxiety, integrating nutritional discussions within TED-based behavioural activation plans.


Summary & Outlook

Vitamin C exemplifies the TED principle that emotional health begins with biological balance. It supports neurotransmitter synthesis, moderates stress responses, protects against oxidative damage, and sustains gut and immune integrity. Within NeuroAffective-CBTยฎ, Vitamin C functions as both a preventive and adjunctive intervention, enhancing emotional resilience and amplifying the effects of psychotherapeutic change.

Like Omega-3, Magnesium, and Creatine in earlier TED modules, Vitamin C represents a key neuro-metabolic pathway where diet and mood converge. However, supplementation should never replace clinical care, it must be introduced under professional guidance and viewed as a supportive component of comprehensive mental health treatment.

Emerging evidence suggests that optimal neurocognitive benefits occur at daily intakes of 200โ€“500 mg of slow release (or time release) Vitamin C, the type that stays longer in the system. Future research should explore Vitamin C supplementation within structured TED protocols for mood, stress, and cognitive disorders, bridging nutritional neuroscience with applied behavioural interventions.


โš ๏ธ Disclaimer

These articles are for educational purposes only and do not replace medical or psychological evaluation. Individuals should consult their GP or prescribing clinician before starting supplementation, especially if taking psychiatric or cardiovascular medication.


Series context: Mirea, D. (2025) TED Series, Part IV: Magnesium and Mental Health. NeuroAffective-CBTยฎ. Available at: https://neuroaffectivecbt.com/2025/10/21/ted-series-part-iv-magnesium-and-mental-health/ [Accessed 22 October 2025].

References

Brody, S., Preut, R., Schommer, K. and Schรผrmeyer, T. (2002) โ€˜Vitamin C high-dose supplementation reduces anxiety and cortisol levelsโ€™, Psychopharmacology, 159(3), pp. 319โ€“324.

Carr, A.C. and Maggini, S. (2017) โ€˜Vitamin C and immune functionโ€™, Nutrients, 9(11), 1211.

Carr, A.C. and Rowe, S. (2020) โ€˜The emerging role of vitamin C in health and diseaseโ€™, Nutrients, 12(9), 2736.

de Beni, R. et al. (2021) โ€˜Vitamin C and epigenetic regulation of brain development and functionโ€™, Frontiers in Neuroscience, 15, 690341.

de Oliveira, I.J. et al. (2015) โ€˜Effects of oral vitamin C supplementation on anxiety in students: A double-blind, randomized, placebo-controlled trialโ€™, Pak J Biol Sci, 18(1), pp. 11โ€“18.

Harrison, F.E. and May, J.M. (2009) โ€˜Vitamin C function in the brain: vital role of the ascorbate transporter SVCT2โ€™, Free Radical Biology and Medicine, 46(6), pp. 719โ€“730.

Mirea, D. (2023) Tired, Exercise and Diet Your Way Out of Trouble (TED Model). NeuroAffective-CBTยฎ. ResearchGate.

Mirea, D. (2025) TED Series, Part IV: Magnesium and Mental Health. NeuroAffective-CBTยฎ. Available at: https://neuroaffectivecbt.com/2025/10/21/ted-series-part-iv-magnesium-and-mental-health/ [Accessed 22 October 2025].

Otte, C., Gold, S.M., Penninx, B.W. et al. (2016) โ€˜Major depressive disorderโ€™, Nature Reviews Disease Primers, 2, 16065.

Young, S.N. (2020) โ€˜Tryptophan metabolism and serotonin synthesis: relevance for psychiatric disordersโ€™, Journal of Psychiatry & Neuroscience, 45(3), pp. 151โ€“161.

TED Series, Part III: Omega-3 and Mental Health.

New Research Findings and NeuroAffective-CBTยฎ Implications

In this third instalment of the TED (Tiredโ€“Exerciseโ€“Diet) Series, we explore how omega-3 fatty acids, particularly EPA and DHA, influence mood, cognition, and emotional regulation. Drawing from neuroscience, nutritional psychiatry, and the NeuroAffective-CBTยฎ framework, this article examines the growing evidence that dietary fats do more than protect the heart, they also nourish the mind. Blending practical TED applications with current clinical research, it offers clinicians and readers accessible strategies for integrating omega-3s into a new lifestyle-based approach to mental health.

Introducing TED in the NeuroAffective-CBTยฎ Framework

The TED (Tiredโ€“Exerciseโ€“Diet) model brings neuroscience, nutritional psychiatry, psychophysiology, and behavioural science into an integrated framework for emotional regulation and mental health. Within the broader NeuroAffective-CBTยฎ (NA-CBT) programme, TED is introduced early to support self-regulation and biological stability, the โ€œBodyโ€“Brainโ€“Affectโ€ triangle that underpins shame-based and affective disorders (Mirea, 2023; Mirea, 2025).

Earlier parts of this series explored the roles of creatine and insulin regulation in mood and cognition. This third instalment turns to omega-3 fatty acids, essential nutrients that play a central role in brain health, mood regulation, and anti-inflammatory balance.


Why Omega-3s Matter: The Brainโ€™s Structural Fat

When people hear the word โ€œfat,โ€ they often think of storage fat the kind that accumulates around the waist or organs. But the brain depends on an entirely different type: structural fat, which makes up the cell membranes of neurons. These membranes control how signals and chemicals move between brain cells, and their flexibility directly affects how efficiently neurons communicate (Huberman, 2023).

Omega-3 fatty acids, primarily EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) are the building blocks of these membranes. DHA maintains the structure of neurons, while EPA modulates inflammation and neurotransmission, influencing serotonin and dopamine signalling (Freeman et al., 2006; Mocking et al., 2020).

From a TED perspective, this is where Diet meets Affect: better membrane health and lower inflammation translate into improved emotional regulation, resilience to stress, and more stable mood patterns.

๐Ÿงฌ What Are EPA and DHA? (In Simple Terms)

When we talk about omega-3 fatty acids, weโ€™re mostly referring to two main types that the body uses for brain and heart health:

  • EPA (Eicosapentaenoic Acid): Think of EPA as the firefighter in your system. It helps reduce inflammation, calm overactive stress responses, and balance the brainโ€™s chemical messengers that affect mood. Studies show that getting enough EPA can help lift low mood and reduce symptoms of depression.
  • DHA (Docosahexaenoic Acid): DHA is more like the architect of your brain. It builds and maintains the structure of your brain cells, especially in areas responsible for memory, focus, and emotional stability. Itโ€™s crucial for brain development, but also for keeping adult brains flexible and resilient under stress.

Both EPA and DHA work together , EPA helps your brain feel better, and DHA helps it work better. You can get them from oily fish like salmon, sardines, and mackerel, or from algal oil if you follow a plant-based diet.

๐Ÿ’ก TED Translation:
EPA supports the Diet part of TED by reducing emotional inflammation, those biochemical โ€œstormsโ€ that make you feel tense or flat. DHA supports the Tired part, helping your brain stay sharp and recover faster when youโ€™re mentally drained. Together, they strengthen the brainโ€“body connection that TED and NeuroAffective-CBTยฎ aim to restore. It is important to note that these supplements do not cure mental health conditions but can operate as adjuncts to therapy and medication, supporting recovery and prevention.


๐Ÿ”ฌ Evidence from Research: Depression, Focus, and Emotional Health

EPA and Depression – What Research Shows

A growing number of studies show that omega-3 supplements rich in EPA (about 1 gram per day) can noticeably reduce symptoms of depression. In some cases, the improvements are similar to those seen with common antidepressant medications in people with mild to moderate depression (Peet & Horrobin, 2002; Martins, 2009; Mocking et al., 2020).

One major study compared 1 gram of EPA to fluoxetine (Prozac), a widely used SSRI antidepressant and found that both worked equally well in improving mood. The group that combined EPA and fluoxetine together did even better, suggesting that omega-3s may enhance the effects of antidepressant treatment (Nemets et al., 2006).

Scientists believe EPA helps mood in several ways. It reduces inflammation in the body and brain (which can interfere with mood-regulating chemicals like serotonin) and keeps brain cell membranes flexible, allowing signals to travel more efficiently between neurons (Su et al., 2018).

๐Ÿ’ก TED Translation:
In TED terms, EPA acts like a โ€œmood stabiliserโ€ for the bodyโ€“brain system, calming internal inflammation, improving brain energy flow, and helping emotions move more smoothly through the day.

DHA and Cognition – The Brainโ€™s Structural Support

While EPA helps regulate mood and inflammation, DHA focuses more on the structure and performance of brain cells. Itโ€™s especially concentrated in brain areas responsible for memory, focus, and emotional balance, such as the prefrontal cortex and hippocampus.

Research shows that people who get enough DHA perform better on memory and attention tasks, particularly older adults or those who normally eat little fish or other omega-3 sources (Yurko-Mauro et al., 2010). DHA helps brain cells maintain flexible outer membranes, allowing them to communicate efficiently and adapt to new information, a process linked to learning and resilience.

When DHA levels are low, brain signalling can become sluggish, affecting concentration, motivation, and even emotional stability. Regular intake through food (like oily fish) or supplements can help restore this โ€œneural flexibility.โ€

๐Ÿ’ก TED Translation:
In TED language, DHA supports the Tired and Diet domains, it helps the brain stay sharp, focused, and emotionally steady, especially under mental fatigue or stress. Think of it as giving your neurons the healthy fat insulation they need to keep your thoughts and emotions running smoothly.


โš–๏ธ Dosage, Ratios, and Practical Guidance

Most research suggests that taking between 1,000 and 2,000 mg per day of omega-3 fatty acids, especially formulations higher in EPA, can noticeably improve mood, focus, and general wellbeing (Martins, 2009; Mocking et al., 2020). For depression and emotional balance, experts often recommend that EPA make up at least 60% of the total omega-3 blend.

You can get these healthy fats from both food and supplements:

  • ๐ŸŸ Natural sources: oily fish such as salmon, sardines, mackerel, and anchovies.
  • ๐ŸŒฑ Plant-based options: chia seeds, flaxseed, walnuts, and algal oil (a vegan source rich in DHA).
  • ๐Ÿ’Š Supplements: choose products that are molecularly distilled or third-party tested for purity and heavy-metal safety.

Because omega-3s are fat-soluble, they are best absorbed when taken with meals that include some healthy fat, such as avocado, eggs, or olive oil.

๐Ÿ’ก TED Translation:
Omega-3s are like the high-quality oil in your brainโ€™s engine, helping neurons glide, communicate, and self-repair. For best results, pair consistent intake with the other TED elements: regular sleep (Tired), sports (Exercise), and nutrient-dense meals (Diet).


TED Practical Layer: Combining Nutrition with Behaviour

The TED approach is about how we live, not just what we take. Omega-3s work best when integrated into daily habits that support absorption, brain function, and emotional balance.

Here are a few practical ways to make that happen:

  1. Take omega-3s with meals that contain healthy fats.
    These fats, like those from eggs, olive oil, or avocado, help your body absorb EPA and DHA more efficiently.
  2. Pair with regular movement.
    Exercise increases enzymes that help omega-3s get into brain cells (Dyall, 2014). Even short daily walks or light strength training enhance this process.
  3. Balance omega-6 intake.
    Many modern diets contain too much omega-6 (from seed oils and processed foods), which can block omega-3 benefits. Aim for a lower omega-6 to omega-3 ratio (around 3:1) to reduce inflammation and support mood regulation (Simopoulos, 2016).
  4. Track mood and focus.
    Keep a brief weekly log of your energy, sleep, and emotional stability. Over a month or two, most people notice more mental clarity and steadier mood.

๐Ÿ’ก TED Translation:
Small, consistent actions matter. Taking omega-3s in the morning, walking regularly, and eating real, unprocessed foods all work together to open up the bodyโ€“brainโ€“affect loop, the very system TED aims to strengthen.

TED and NeuroAffective-CBTยฎ Integration

In the NeuroAffective-CBTยฎ (NA-CBT) framework, the TED model (Tired, Exercise, Diet) bridges the gap between the mind and body. Omega-3 supplementation fits naturally within the Diet domain, but its effects ripple across all three.

Low omega-3 levels have been linked to mood dysregulation, impulsivity, and emotional reactivity โ€” all central features of the bodyโ€“brainโ€“affect triangle that NA-CBT helps regulate (Mirea, 2025). Supporting neuronal health through dietary means therefore complements core CBT processes such as emotional awareness, behavioural activation, and self-compassion.

For clinicians, this integration can be structured through a few evidence-informed steps:

  1. Screen for dietary insufficiency or inflammation markers (e.g., high omega-6 intake, poor diet quality).
  2. Psychoeducate clients on the bodyโ€“mind connection โ€” explain how stabilising the bodyโ€™s biochemistry supports cognitive flexibility.
  3. Encourage gradual habit stacking, introducing omega-3s alongside TED routines (sleep hygiene, consistent exercise).
  4. Monitor outcomes, tracking not just mood changes, but energy, focus, and emotional resilience.

๐Ÿ’ก TED Translation:
Think of omega-3s as emotional lubricants, subtle but powerful agents that help the brainโ€™s communication systems run smoothly, making it easier for CBT tools to โ€œclick.โ€ Combined with good sleep and movement, they form part of a whole-person therapy that builds physiological and psychological balance from the inside out.


Summary & Outlook

The evidence around omega-3 fatty acids, particularly EPA and DHA, continues to grow, positioning them as safe, low-cost, and biologically plausible adjuncts for improving mood, cognition, and emotional regulation. In depression, EPA-dominant formulations (~1 g/day) have demonstrated antidepressant effects comparable to SSRIs in mild-to-moderate cases (Nemets et al., 2006; Mocking et al., 2020). DHA, on the other hand, plays a structural and neuroprotective role, supporting long-term cognitive resilience.

From the TED viewpoint, omega-3s bridge physiology and psychology. They not only support neuronal efficiency but also improve the emotional flexibility required for therapeutic change โ€” embodying TEDโ€™s principle that lifestyle science and psychotherapy are most effective when integrated.

Within the TED (Tiredโ€“Exerciseโ€“Diet) framework, omega-3s exemplify how dietary micro-interventions can amplify psychotherapeutic outcomes. Combined with good sleep, consistent exercise, and emotional processing, the three TED pillars, they help restore the physiological stability necessary for deeper psychological change.

For clinicians, the takeaway is practical:

  • Screen for dietary quality and omega-3 intake early in assessment.
  • Encourage balanced omega-3 to omega-6 ratios.
  • Integrate nutritional strategies alongside CBT interventions.
  • Track progress using both subjective (mood, focus) and objective (diet logs) measures.

๐Ÿ’ก Final Thought (TED Translation):
Omega-3s donโ€™t just feed the body, they fuel the brain. When woven into the TED lifestyle and NeuroAffective-CBTยฎ framework, they help restore energy, sharpen thinking, and smooth the emotional landscape, supporting the long-term goal of mindโ€“body regulation.


โš ๏ธ Disclaimer

These articles do not replace medical or psychological assessment. Regular health checks, including blood lipid and inflammatory markers, are recommended. Always consult your GP or prescribing clinician before starting supplementation, particularly if taking psychiatric medication or anticoagulants.


๐Ÿงพ References

Allen, P.J., Dโ€™Anci, K.E. & Kanarek, R.B. (2024) โ€˜Creatine supplementation in depression: bioenergetic mechanisms and clinical prospectsโ€™, Neuroscience & Biobehavioral Reviews, 158, 105308.
Dyall, S.C. (2014) โ€˜Long-chain omega-3 fatty acids and the brain: A review of the independent and shared effects of EPA, DHA and ALAโ€™, Frontiers in Aging Neuroscience, 6, 52.
Freeman, M.P. et al. (2006) โ€˜Omega-3 fatty acids: Evidence basis for treatment and future research in psychiatryโ€™, Journal of Clinical Psychiatry, 67(12), pp. 1954โ€“1967.
Huberman, A. (2023) Food and Supplements for Mental Health. The Huberman Lab Podcast, Stanford University.
Martins, J.G. (2009) โ€˜EPA but not DHA appears to be responsible for the efficacy of omega-3 supplementation in depressionโ€™, Journal of Affective Disorders, 116(1โ€“2), pp. 137โ€“143.
Mirea, D. (2023) Tired, Exercise and Diet Your Way Out of Trouble (TED Model). NeuroAffective-CBTยฎ. ResearchGate.
Mirea, D. (2025) TED Series, Part III: Omega-3 and Mental Health. NeuroAffective-CBTยฎ. Available at: https://neuroaffectivecbt.com/2025/10/18/ted-series-part-iii-omega-3-and-mental-health/ [Accessed 18 October 2025].
Mocking, R.J.T. et al. (2020) โ€˜Meta-analysis and meta-regression of omega-3 polyunsaturated fatty acid supplementation for major depressive disorderโ€™, Translational Psychiatry, 10, 190.
Nemets, B., Stahl, Z. & Belmaker, R.H. (2006) โ€˜Addition of omega-3 fatty acid to maintenance medication treatment for recurrent unipolar depressive disorderโ€™, American Journal of Psychiatry, 163(6), pp. 1098โ€“1100.
Simopoulos, A.P. (2016) โ€˜An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity and metabolic syndromeโ€™, Nutrients, 8(3), 128.
Su, K.P. et al. (2018) โ€˜Omega-3 fatty acids in major depressive disorder: A preliminary double-blind, placebo-controlled trialโ€™, European Neuropsychopharmacology, 28(4), pp. 502โ€“510.
Yurko-Mauro, K. et al. (2010) โ€˜Beneficial effects of docosahexaenoic acid on cognition in age-related cognitive declineโ€™, Alzheimerโ€™s & Dementia, 6(6), pp. 456โ€“464.

Why Your Brain Makes You Crave Certain Foods

and How ‘TED’ can Help You Rewire It…

Why do some foods feel irresistible, while others barely tempt you? It is tempting to think cravings are just about taste, sweet, salty, sour, bitter, but the truth runs much deeper. Your brain and gut are in constant conversation, sending signals that shape not only what you like to eat, but what you want to eat again and again. But hereโ€™s the twist: those preferences arenโ€™t fixed! With the right strategies, you can actually retrain your brain to crave healthier foods. One of the most practical tools for doing this is ‘TED‘ short for Tired, Exercise, Diet. Within the NeuroAffective-CBT approach, TED is one of the most compelling self-regulation frameworks. It uses the idea of an ‘imaginal friend‘, a life-coach or inner guide that can help you stay focused on daily choices which support meaningful lifestyle changes. These changes strengthen both physical health and immunity while also building psychological resilience, self-appreciation, and self-love.

Each component of TED – Tiredness (sleep), Exercise, and Diet, has strong empirical links to emotional and cognitive wellbeing. First introduced to the psychotherapy world nearly 20 years ago by behaviourist Daniel Mirea (Mirea, 2023), TED has become a cornerstone of the NA-CBT approach. At its core, TED highlights the Bodyโ€“Brainโ€“Affect triangle, showing how rest, movement, and nutrition work together to regulate cravings, balance mood, and improve overall health.

So, let’s think of TED as your inner coach and personal trainer, totally on your side but tough and fair, a voice you can hear all the time:

  • Tired โ†’ how well you rest shapes hunger, hormones, and food choices.
  • Exercise โ†’ physical activity resets dopamine and balances stress.
  • Diet โ†’ what you eat trains your gut and brain to prefer certain foods.

And now… with TED in mind, letโ€™s examine how cravings really work and how to rewire them.

The Three Layers of Food Preference

Scientists generally point to three systems that explain why we like certain foods:

1. Taste Buds (Diet in Action)

The tongue is the first gatekeeper of food preference. It detects sweet, salty, sour, bitter and, umami (savory, meaty flavour), behaviourally guiding us toward energy-rich or protein-rich foods. This happens because specialised neurons on the tongue can detect sweetness, saltiness, sourness, bitterness, and umami. They give us that instant โ€œyumโ€ or โ€œyuckโ€. But taste alone isnโ€™t the full story. What you repeatedly eat conditions your taste buds. A diet heavy in ultra-processed foods can dull sensitivity to natural flavors, while a shift to whole foods can make simple tastes more rewarding within 7โ€“14 days (Wise, P. et al., 2016; Turner S et al., 2022).

๐Ÿ‘‰ What does TED say? This is where D for Diet comes in: by choosing nourishing foods consistently, you retrain both your taste buds and your reward circuits. But also, E for Exercise: by changing habits and replacing eating with exercise rewiring occurs even faster and the brain is much more likely to ‘demand and accept’ protein-based products useful for muscle development.


2. Gutโ€“Brain Signaling (The Sleep & Diet Link)

As food travels down the digestive tract, neurons detect its texture, temperature, and nutrients. Specialised โ€œneuropod cellsโ€ are tuned to sense amino acids, sugars, and fats. These cells send electrical signals through the nodose ganglion straight into the brain, triggering dopamine, the neurotransmitter of motivation and reward Bohรณrquez et al., 2015. In other words, when sugar, fat, or amino acids hit the gut, they trigger dopamine release, shaping cravings at a subconscious level.

And hereโ€™s the worse news: poor sleep (The T from TED – Tired) makes these signals even stronger. Lack of rest ramps up ghrelin (the hunger hormone) and dampens leptin (the satiety hormone), pushing you toward high-calorie foods. At the same time, a diet rich in fiber, protein, and complex carbs strengthens gutโ€“brain communication in healthier ways.

๐Ÿ‘‰ TED takeaway: better sleep and diet quality work hand in hand to keep cravings in check.


3. Learned Associations (Exercise as a Reset Button)

The brain is able to link the flavour of food with its aftereffects, like blood sugar rise and dopamine rise after a sweet snack. Over time, these associations become powerful drivers of preference de Araujo et al., 2008.

As such, our brain learns fast to link specific flavours with specific metabolic outcomes. As in the earlier example, sweet taste plus a rise in blood glucose teaches the brain to crave sugar.

And even though artificial sweeteners and many fruits contain little or no glucose, when paired with high-carbohydrate foods (e.g., low-sugar jam with a croissant or fruit with cornflakes), the brain links their sweet taste to the subsequent glucose surge. Over time, this conditioning strengthens the craving pathway at both behavioural and neural levels.

However, regular and intensive Exercise (The E out of TED) helps break this loop. Movement not only burns energy but also improves insulin sensitivity and modulates dopamine pathways, making it easier to โ€œresetโ€ reward associations. People who exercise regularly often find it easier to shift away from addictive food patterns.

๐Ÿ‘‰ TED takeaway: put together, these systems explain why food isnโ€™t just fuel. Itโ€™s a constant feedback loop, where your body teaches your brain what to want. You can use movement to retrain your brainโ€™s learned food-reward pathways.


Your Gut Is Training You

We tend to think of the gut as just a digestion machine. But in reality, itโ€™s a sensory system. As food moves through the stomach and intestines, neurons are watching closely. They respond to stretch (how full your gut is), texture, spiciness, and even temperature.

The most fascinating players are those neuropod cells. They act like food sensors, tuned to the chemistry of whatever you eat. The moment they detect sugars, fats, or amino acids, they send electrical signals to the brain in milliseconds Kaelberer et al., 2018. The brain responds by releasing dopamine, making you feel motivated to seek out more of that food.

This whole process is subconscious. You donโ€™t โ€œdecideโ€ that chocolate cake is rewarding. Your gut tells your brain before you even realize it.


Sweetness and the Dopamine Trap

Sweet taste gives us the clearest example of how these systems interact. Humans are naturally wired to like sweet things โ€” especially children. Sweetness signals calories, which the brain rewards with dopamine.

So what about artificial sweeteners? Why are those still problematic? As explained earlier, sugar reliably increases blood glucose and dopamine. Non-caloric sweeteners taste sweet but donโ€™t raise blood glucose. And at first, dopamine doesnโ€™t budge. But here is the twist: with repeated exposure, artificial sweeteners do start to trigger dopamine. Why? Because your brain learns to expect that sweet taste to mean โ€œenergy incomingโ€ Tellez et al., 2016.

And as already mentioned things get even more complicated when you pair diet drinks (sweet but calorie-free) with a burger and fries (calorie-dense). Over time, your brain begins to link the sweet taste with a metabolic effect. Later, even diet fizzy drink alone can change your insulin response, as if it contained sugar Swithers, 2013.

๐Ÿ‘‰ A practical tip from TED? If you enjoy a diet or low-calorie drink, it is probably better to drink it separately from high-carb meals. Otherwise, you may condition your body to release insulin in ways that throw off blood sugar control. But of course, it would be ideal to avoid sugar or sweetener rich drinks all together especially if your meal is equally rich in carbs and instead… simply replace it with water!


The Psychology of Belief

Itโ€™s not just biology at play. Your mindset about food can literally change how your body reacts. Stanford University professor Alia Crum ran a striking study: participants were given the exact same milkshake but told two different stories about it. Some were told it was โ€œindulgent, high-calorie, rich and satisfying.โ€ Others were told it was โ€œlight, low-calorie, and healthyโ€. The results? The โ€œindulgentโ€ shake produced bigger rises in insulin, ghrelin (a hunger hormone), and blood glucose. People also reported feeling more satisfied Crum et al., 2011. The same drink or shake but a totally different body response, based only on belief.

This is not the classic placebo effect. It is a belief effect: our expectations about food shape our physiology!


Rewiring Your Cravings

Hereโ€™s the good news: your food preferences arenโ€™t set in stone. Scientists describe them as soft-wired, flexible and open to change. Studies show that if you consistently eat a food for 7โ€“14 days, especially when paired with enjoyable or energizing foods, your brain starts to assign more value to it. Translation: it literally tastes better over time (Wise, P. et al., 2016; Turner S et al., 2022; Small et al., 2019).

This is why people in different dietary war-camps like keto, vegan, Mediterranean, etc. Often feel so passionate about their way of eating and fight each other in research facts. Their brains have been conditioned to find their chosen foods the most rewarding.

And you can use the same principle to your advantage. Want to enjoy more leafy greens? Pair them with foods that give you a metabolic boost. Over time, your brain will start rewarding you for those choices.


The Bigger Picture

At the deepest level, your brain isnโ€™t chasing sweetness, salt, or even dopamine. What it really wants is energy for neurons. Food preference is just the surface expression of this survival mechanism.

The catch? In todayโ€™s food environment, ultra-processed and hyper-palatable foods hijack this system. They deliver intense dopamine spikes that make ordinary, healthier foods seem bland by comparison Johnson & Kenny, 2010.

But the opposite is also true: by gradually shifting your diet toward whole, nutrient-rich foods, your dopamine system adapts, and those foods become genuinely more rewarding.


Final Thoughts

Food is far more than fuel. Itโ€™s a dialogue between taste buds, gut neurons, brain chemistry, and even your beliefs. Together, these systems decide what you crave, what satisfies you, and what you keep reaching for.

Perhaps a useful analogy would be to view food preferences as being both hard-wired and soft-wired. Hard-wired circuits push us toward energy-rich foods. Soft-wired associations, however, can be reshaped through repeated exposure and lifestyle choices. And this is where TED truly shines:

  • Tired โ†’ Sleep enough to regulate hunger and strengthen decision-making.
  • Exercise โ†’ Move daily to reset dopamine and insulin sensitivity.
  • Diet โ†’ Feed your gut and brain with nutrient-rich foods that train cravings. Add products like vinegar, lemon, kefir to your diet in order to keep the glucose spike down.

Modern processed foods hijack dopamine pathways, but TED offers a counterweight. With small, consistent shifts, better rest, regular movement, and smarter eating, you can rewire your cravings and restore balance. In a well-known study, participants drank the same milkshake but were told it was either โ€œindulgentโ€ or โ€œlow-calorieโ€. The indulgent version triggered stronger hormonal and metabolic responses, showing that belief changes physiology – so the mindset matters.

This is where TED would demand from you a renewed and improved attitude and mindset:

Diet: Choosing whole foods builds a narrative of self-care that strengthens psychological reward.

Tired: A good sleep and regular rest bites improve emotional regulation, making you less vulnerable to comfort eating and in general emotions are more manageable due to a less reactive amygdala.

Exercise: This list is very long – builds muscle, burns fat, deals with insuline resistance and overall boosts confidence and reinforces positive self-beliefs about health.


โœจ In short: TED isnโ€™t just a checklist; it is a neuroscience-backed guide for aligning your lifestyle with the way your brain and gut actually work. By honoring the ‘big three‘, sleep, exercise, and diet, you can gradually teach your brain to want specific activities and foods that fuel health and wellbeing.

Recommended Reading

If youโ€™d like to explore the science behind food preference and reward systems in more depth, here are a few excellent resources: